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A novel C9 acridane-adduct, featuring ketobenzimidazole chelate, functions as a highly selective fluores-
cent chemodosimeter for Cu2+, while other metal ions pose little interferences, if any. The signaling strat-
egy operates via the Cu2+-mediated retro-reaction, generating a strongly fluorescent acridinium ion at the
expense of the weakly emitting probe.
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Copper is essential for all plants and animals with many impor-
tant cellular and enzymatic functions directly under its control.1 At
the same time, copper is also a toxic pollutant,2 and exposures in
humans beyond the physiological limits are known to cause some
serious health disorders.3 Consequently, designing the selective
and sensitive Cu2+ chemosensors is an important goal for biological
and environmental monitoring.4 Because of the paramagnetic nat-
ure of Cu2+, most chemosensors designed to detect it offer less sen-
sitive and error prone luminescence quenching responses.5 In a
limited number of sensitive fluorescence turn-on Cu2+ sensors de-
scribed to date,6 the paramagnetically induced excited state deac-
tivation is circumvented either via the chelation induced blocking
of the quenching channel7 or by turning the non-emitting n–p*
state into the fluorescent p–p* state.8

In recent years, chemodosimeters have emerged as promising
ion sensing motifs, because the accompanying ion-promoted
chemical modifications often generate highly contrasting and eas-
ily quantifiable optical responses. The first fluorescence turn-on
Cu2+ chemodosimeter was described by Czarnik and co-workers
by the application of a spiro-ring-opening protocol on a chelating
rhodamine derivative.9 Following this elegant work, additional
examples of Cu2+ chemodosimeters, based on the rhodamine plat-
form or other signaling strategies, which include ring closures or
hydrolytic reactions have been reported.10 Despite impressive ad-
vances, the issues of delayed responses and/or varying degrees of
cross affinities associated with a number of Cu2+ chemosensors/
ll rights reserved.
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chemodosimeters necessitate the designing of new sensing ap-
proaches in order to elicit fast optical responses and optimizing
the selectivity.

Acridinium salts are well-known to react with nucleophiles on
their highly electrophilic C-9 position.11,12 As illustrated in
Scheme 1, certain C9 acridane-adducts of hydroxyl, methoxyl, or
acetate anions are susceptible to retro-reactions under the acidic
conditions or photoactivation.13,14 Presently, we envisaged that a
suitably designed C9 acridane-chelate adduct might also undergo
retro-reaction upon interacting with strongly chelating metal ions,
a process that could be exploited to develop optical metal ion
sensors.

With this intent, we have synthesized C9 acridane–ketobenzim-
idazole adduct, designated as Acrida-B (Scheme 2), by reacting N-
methylacridinium salt 1 with the enolate of a potentially chelating,
2-acetyl benzimidazole 215 (Supplementary data). The rationale for
the optical sensing is based on the premise that the coordination of
metal ion with N, O binding site of Acrida-B would polarize the C–C
Nu = AcO-, MeO-, HO-

Scheme 1. Reversible nucleophilic addition on the acridinium ion.
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Scheme 2. Synthesis of C9 acridane–ketobenzimidazole adduct, Acrida-B, and the
proposed metal ion (Mn+)-mediated retro-reaction.
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Figure 1. Absorbance response of Acrida-B (10 lM) to increasing Cu2+ (0–1000 lM)
in MeOH/H2O (8:2 v/v) Tris–HCl buffer (5 mM, pH 7).
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Figure 2. Fluorescence response of Acrida-B (1 lM) with increasing Cu2+ (0–
100 lM) in MeOH/H2O (8:2 v/v).Tris–HCl buffer (5 mM, pH 7).
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bond connecting acridane with ketobenzimidazole, while the acri-
dane-N lone pair would provide the ultimate push to trigger the
retro-reaction, thereby releasing the metal-coordinated chelate
and the acridinium ion.16 The available reports indicate the acri-
dane motifs to be weakly emissive, while acridinium salts are
known to be strongly fluorescent.17 Thus, assuming Acrida-B to
be also poorly emitting, we anticipated the fluorescence ‘switch-
on’ response on account of the formation of non-coordinating, fluo-
rescent acridinium ion in this process. From the results to follow,
the probe, Acrida-B, has been found to function as a selective and
sensitive fluorescent Cu2+ chemodosimeter, but not for other metal
ions investigated.

From the concentration-dependent studies with several metal
ions, we found that only Cu2+ induced relatively pronounced vari-
ations in both the ground and the excited state profiles of the
probe. The absorption spectrum of Acrida-B in MeOH/H2O (8:2 v/
v) in Tris–HCl buffer (5 mM, pH 7) displayed a maximum at
289 nm, attributable to the electronic transitions of the acridane
moiety.18

As shown in Figure 1, the spectrophotometric titration with
Cu2+ (0–1000 lM) revealed progressive decline in the probe max-
ima, while a new maxima centered at 356 and 400–450 nm region
evolved concurrently. Unlike the Cu2+, the probe’s UV–vis behavior
was essentially insensitive up to 104 lM of perchlorates of Na+, K+,
Li+, Ca2+, Ba2+, Mg2+, Zn2+, Ni2+, Co2+, Cd2+, Ag+, and Pb2+, with only
slight absorbance increase (5–15%) being observed at the 289 nm
maximum, but without producing any longer wavelength bands,
as seen in the case of Cu2+ (Supplementary data).

Acrida-B, upon excitation (kex = 356 nm) displayed, typical of
the acridane systems, a very poorly emissive band centered at
399 nm. As depicted in Figure 2, with increasing exposures to
Cu2+, the probe’s emission at 399 nm gave way to a new, strongly
emissive band in the range 400 to 600 nm with the maximum
intensity centered at 490 nm.
By saturating Cu2+ (100 lM), the emission intensity at 490 nm
peaked, displaying more than 67-fold enhancement with respect
to that of the free probe at 390 nm. The Cu2+-modified emission
behavior, with regard to both the energy and shape, was found
to essentially conform to that reported for N-methylacridinium
ion.19 Clearly, the Cu2+-induced fluorescence turn-on response is
the result of Cu2+-mediated retro-reaction,20 generating a strongly
fluorescent acridinium ion at the expense of a weakly emitting
probe.

Consistent with the nondescript spectrophotometric results, the
fluorescence of Acrida-B (1 lM) also showed virtually no responses
to the added Na+, K+, Li+, Ca2+, Ba2+, Mg2+, Zn2+, Ni2+, Co2+, Cd2+, Ag+,
and Pb2+ at 100 lM, the concentration at which Cu2+ induced a
remarkably efficient fluorescence signaling. Further study revealed
that at 10-fold or higher concentrations than Cu2+, some of the me-
tal ions (Mg2+, Zn2+, Ni2+, Co2+, and Cd2+) did exhibit responses,
however, the fluorescence enhancements were significantly trun-
cated, being only in the range of two to fivefold (Supplementary
data).

Fluorescence-derived Job’s plot (Supplementary data) indicated
1:1 binding stoichiometry. In order to evaluate the selective
chemodosimeter action of Acrida-B toward Cu2+, we initially mea-
sured the fluorescence responses at 490 nm in the presence of
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Figure 3. Selective binding studies of Acrida-B (1 lM, MeOH/H2O (8:2 v/v) at pH
7.0) by fluorescence intensities’ measurements at 490 nm. The black bars represent
emission intensities after adding 1000 lM perchlorates of each of (1) Na+, (2) K+, (3)
Li+, (4) Ca2+, (5) Ba2+, (6) Mg2+, (7) Zn2+, (8) Ni2+, (9) Co2+, (10) Cd2+, (11) Ag+, (12)
Pb2+. The red bars indicate emission intensities after adding 100 lM of Cu2+ to each
of the above solutions.
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1000 lM each of Na+, K+, Li+, Ca2+, Ba2+, Mg2+, Zn2+, Ni2+, Co2+, Cd2+,
Ag+, and Pb2+. As shown in Figure 3, the fluorescence was amplified
by a maximum of fivefold, depending upon the identity of the me-
tal ions. Thereafter, addition of 100 lM of Cu2+ caused the fluores-
cence intensity to enhance by 62–67-fold, nearly the same as
observed with Cu2+ alone at this concentration. These results re-
flect a very strong binding affinity of Cu2+ toward the ketobenzim-
idazole chelate of Acrida-B. By contrast, several back-ground metal
ions reveal a significantly weaker binding even in relatively higher
concentrations than Cu2+.

It is noteworthy that, of the different metal perchlorate (100 lM)
added to a colorless solution of the probe (1 lM), only Cu2+ instantly
produced a yellowish fluorescent solution, thereby allowing ‘naked
eye’ recognition of this metal ion (Supplementary data).

Response times of 1–15 min and temperatures from ambient to
50 �C have been reported for certain known Cu2+ chemodosime-
ters.9,10b,c,h,i By contrast, Acrida-B generates optical responses
spontaneously at room temperature, allowing rapid detection of
Cu2+. Moreover, the present probe does not suffer significant inter-
ferences from Zn2+, Ni2+, Cd2+, Pb2+, and Co2+ even in concentra-
tions 10 times higher than Cu2+.21 Furthermore, high sensitivity
of the probe toward Cu2+ is evident from the detection limit of
4.16 � 10�8 M calculated from the fluorescence data (Supplemen-
tary data). The observation of linear fluorescence response against
increasing Cu2+ concentration implies that Acrida-B could be used
for the detection of submillimolar of Cu2+.

In conclusion, we have disclosed a new chemodosimeter strat-
egy based on a novel metal ion-mediated retro-reaction of an acri-
dane–ketobenzimidazole adduct. The high selectivity, sensitivity,
and fast optical response confer the probe with a potential for
the chemical and environmental tracking of Cu2+ at submicromolar
levels. Several other metal ions afford no or less pronounced opti-
cal perturbations even in relatively higher concentrations to make
any significant impact on the discrimination of Cu2+. Importantly,
the present strategy promises wider sensing capabilities if chelates
exhibiting selective metal ion binding could be incorporated into
the acridane motif.
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